返回

第三百五十章 搞定毕业论文

首页
关灯
护眼
字:
上一页 回目录 下一页 进书架
行,一列列。

    除了上课,程诺一整天都泡在图书馆里。

    等到晚上十点闭馆的时候,程诺才背着书包依依不舍的离开。

    而在他手中拿着的草稿纸上,已经密密麻麻的列着十几个推论。

    这是他劳动一天的成果。

    明天程诺的工作,就是从这十几个推论中,寻找出对Bertrand 假设证明工作有用的推论。

    …………

    一夜无话。

    翌日,又是阳光明媚,春暖花开的一天。

    日期是三月初,方教授给程诺的一个月假期还剩十多天的时间。

    程诺又足够的时间去浪……哦,不,是去完善他的毕业论文。

    论文的进度按照程诺规划的方案进行,这一天,他从推导出的十几个推论中寻找出证明 Bertrand 假设有重要作用的五个推论。

    结束了这忙碌的一天,第二天,程诺便马不停蹄的开始正式Bertrand 假设的证明。

    这可不是个轻松的工作。

    程诺没有多大把握能一天的时间搞定。

    可一句古话说的好,一鼓作气,再而衰,三而竭。如今势头正足,最好一天拿下。

    这个时候,程诺不得不再次准备开启修仙大法。

    而修仙神器,“肾宝”,程诺也早已准备完毕。

    肝吧,少年!

    程诺右手碳素笔,左手肾宝,开始攻克最后一道难关。

    切尔雪夫在证明Bertrand 假设时,采取的方案是直接进行已知定理进行硬性推导,丝毫没有任何技巧性可言。

    程诺当然不能这么做。

    对于Bertrand 假设,他准备使用反证法。

    这是除了直接推导证明法之外最常用的证明方法,面对许多猜想时非常重要。

    尤其是……在证明某个猜想不成立时!

    但程诺现在当时不是要寻找反例,证明Bertrand 假设不成立。

    切尔雪夫已然证明这一假设的成立,使用反证法,无非是将证明步骤进行简化。

    程诺自信满满。

    第一步,用反证法,假设命题不成立,即存在某个 n ≥ 2,在 n 与 2n 之间没有素数。

    第二步,将(2n)!/(n!n!)的分解(2n)!/(n!n!)=Π ps(p)(s(p)为质因子 p 的幂次。

    第三步,由推论5知 p < 2n,由反证法假设知 p ≤ n,再由推论3知 p ≤ 2n/3,因此(2n)!/(n!n!)=Πp≤2n/3 ps(p)。

    …………

    (本章未完,请点击下一页继续阅读)
上一页 回目录 下一页 存书签