返回

第三百五十九章 我已经搞定了!

首页
关灯
护眼
字:
上一页 回目录 下一页 进书架
嚼碎。

    就连前面四位老师和答辩毕业生交流,他都没有察觉。

    虽然魏院长的此篇论文和程诺的毕业论文选择的证题相同,但具体的证明步骤却是千差万别。

    程诺和上世纪伟大的数学家切尔雪夫在证明Bertrand 假设时,都是采用引理代入推导的方法。

    但在魏院长的这篇论文中,他却另辟蹊径,采取了一种截然不同的证明思路。

    Euler 乘积公式引入法!

    程诺暂且用这么名字命名。

    在论文中,魏院长从证明过程的一开始,就引入Euler 乘积公式这个概念,随后通过Euler 乘积公式和Bertrand 假设的数学逻辑关系,进行命题推导。

    何谓Euler 乘积公式?

    这是数学家日耳曼提出的关于复数分布的起点之一,具体内容为:对任意复数 s,若 Re(s)>1,则:Σn n-s =Πp(1-p-s)-1。

    这是一个相当冷门的数学公式,在现在数学学术研究中几乎很难用到。

    没想到,魏院长会突发奇想,用它作为证明Bertrand 假设的另一切入点,果然不愧为曾经的华国数学界的大牛。只不过,结果似乎并不完美。

    用了十多分钟的时间,程诺看完了整篇论文。

    当然,这指的不是程诺读完了文件那完整34页的内容。

    和程诺提交的毕业论文一样,真正算是真材实料的,只有那五六页的内容罢了。

    读完之后,程诺对魏院长的证明思路也算是了解。

    首先,他设 f(n)为满足 f(n1)f(n2)= f(n1n2),且Σn|f(n)|<∞的函数(n1、 n2 均为自然数),则可顺利推导出:Σnf(n)=Πp[1+f(p)+f(p2)+f(p3)+...]。

    得出上面那一串的推导定理后,算是完成了证明的第一步。

    下面,由于Σn|f(n)|<∞,因此 1+f(p)+f(p2)+f(p3)+...绝对收敛。考虑连乘积中 p < N 的部分(有限乘积)………利用 f(n)的乘积性质可得:Πp
    第三步,由于 1+f(p)+f(p2)+f(p3)+...= 1+f(p)+f(p)2+f(p)3+...=[1-f(p)]-1……

    第四步,……

    …………

    

    (本章未完,请点击下一页继续阅读)
上一页 回目录 下一页 存书签