293章
全国高中数学联赛,试题的内容主要涵盖四个数学分支:平面几何,代数,初等数论,组合数学。
当然,不仅仅是数学竞赛,在IMO的赛场上,也是主要考这四个方面的内容。但这并不是限定某一类型的题目就必须要用某一方面的知识来进行求解。数学是一门内在相互联系的学科,一道题目,用代数的方法能解出来,或许也能用数论的方法进行求解。数学中,总是充满着无限的可能,也充满着无尽的乐趣。
对于常人来说看一眼就觉得头大的公式,或许对这一群参加竞赛培训的学生来说,有着别样的美感。
…………
讲台上,老唐举着辅导书,先把题目在黑板上写下。
【给定正整数n,正六边形的六个顶点各写有一个非负整数,其和为n,现在进行如下操作:擦掉一个顶点上的数,然后写上相邻两个顶点上面数的差的绝对值,求所有的n,使得无论开始时有哪些整数,都可以进行一系列操作,使得每个顶点上的数都是零。】
从题目上来看,这道题目就不简单,而且和高中所遇到的各种题型都有着不小的差别。也难怪,参加培训的三十多号人,只有一人解出来。
老唐同志一边唰唰唰的在黑板上写着步骤,一边为台下的众人讲解。
他先画了一个正六边形。
“首先,根据题意,我们假设六边形的六个点的奇偶性按照逆时针的顺序依次为偶,奇,奇,偶,奇,奇。这样的话,则无论怎么操作,这六个数的奇偶性都不会变,那么…………”
“……根据上面的过程,我们暂时可以得出一个命题:只要初始的六个数不是偶,奇,奇,偶,奇,奇,也不是全为偶数,那么一定能通过有限次的操作使得所有的数都等于零。”
“这一个命题,只是我们自己写的,并不知道他的真假,下面,就需要我们去通过分类讨论的方式证明这个命题是一个真命题,看我的讨论步骤,我们先从……”
“……这块黑板上的过程
(本章未完,请点击下一页继续阅读)