下午,小树林。
程诺上完课后,准时赴约。
在小树林内一个用来休息的石桌上,王根基早已等候在此。
见程诺到来,王根基朝着他挥挥手,“这边,这边。”
程诺来到石桌,坐到王根基对面。
小树林在校园内属于人迹罕至的区域。除了偶尔会有舍不得花钱出去住旅馆的几对情侣之外,基本上很少有人来这。
风吹动树叶,发出哗啦啦的响声。
静谧的小树林,石桌上,程诺和王根基两人相对而坐。
“我们……开始吧。”王根基看了程诺一眼,脱下外套,缓缓开口。
程诺轻轻点头,深呼一口气,“嗯,学长,来吧!”
王根基从身旁的书包中拿出一叠A4纸。
那是他提前打印好的论文。一共七页。
他把打印好的论文递给程诺,用渴望的目光望着程诺,“现在能告诉我,我的论文到底哪个步骤出错了吧?”
昨天一整晚,因为一直琢磨这件事,他又是一整晚都没睡好。
这不,今天下午,他刚吃完午饭,就来到这片小树林,早早的等待程诺。
就算是死,也要死个明白。
王根基并不知道自己这片论文还能不能抢救一下。但至少,他要知道自己出错在哪里。
程诺笑着接过论文,耸耸肩,“当然可以。”
程诺从口袋中掏出一根笔,翻到论文的第二页,在一个公式下面重重的画了一横。“呶,就是这个步骤。学长,你是怎么从前面那几个公式,推到这个式子的呢?”
程诺划下的那个公式是王根基提出的那种新型解法的最开始的几个推导公式之一。
在论文中,王根基写到,将一个Black-Scholes随机微分方程,例如:d£=£1(udt+σdB1)
写出这个随机微分方程的伪齐次微分方程,d£=σ£dB ,故……
再设一个方程f(x)=c(t)e^σB*t,将其一阶求导的后的最大值和最小值,分别代入原方程的伪齐次微分方程中,进而利用黎曼积分求解,最后用Ito公式求微分。
关键的,就
(本章未完,请点击下一页继续阅读)