。按照欧几里德《几何原本》中的表达应该是以直角三角形两条直角边的两个正方形面积之和等于以其斜边为边的正方形的面积。”
阿布杜点头:“欧几里德是这样说的。”
江逐流道:“这里的勾股弦的意思你明白了。上面的印度数字2你们黑衣大食也在使用,当然也认识,不过在这里它不代表2的原意,代表的是平方的意思,也就是勾的平方、股的平方和弦的平方。”
“这个我也明白了,可是这里这两个符号表示什么意思呢?”阿布杜手指着“=”和“+”问道。
“这个分别表示等于和加上。这个等式的意思就是勾的平方加上股的平方等于弦的平方。”
“噢!”阿布杜恍然大悟:“我明白了,江学者,商高的勾股定理用这么一个等式就完全表达出来了,果然是简洁。”
江逐流微微一笑,孺子可教也!
阿布杜有点沮丧,“看来,毕达哥拉斯定律果然是你们大宋发明的。欧几里德的论述就没有如此简洁。”
“可是,这个股沟定律,不,勾股定律和你刚才说的商高四问不可能实现有什么关系?”阿布杜旋即又提出了一个问题。
江逐流不回答,却又拿起鹅毛笔,写了一个等式:a2+b2=c2
“阿布杜,我现在用字母abc分别代替勾股弦,你可明白?”
阿布杜表示明白。
“这个表示方法,我们称之为代数。”
阿布杜立刻叫道:“我们黑衣大食一个大学者叫阿尔克瓦里兹米,他写了一本书叫《移项和整理同类项》,这本书传到白衣大食那里,被称为《代数》”
江逐流冷冷地说道:“代数之名我中华自古有之,白衣大食不过借用我们的名词而已。”
阿布杜顿时语塞。
江逐流说道:“我中华不但有代数和几何,而且还有你们从来不知道的东西,把代数和几何结合起来。按照我们大宋天朝的叫法,称之为《解析形学》。”
“《解析形学》?”阿布杜简直要抓狂了,各种新鲜词汇源源不断地从这个宋朝年轻学者口中流出,其包含的信息
(本章未完,请点击下一页继续阅读)