方法是同余并藉此得同余类,即被一个数除之后的余数。
但是无穷多个数不可能每个都是需要的,数学家们便选择了质数,所以从某种程度上说,这个问题还与黎曼猜想Zeta函数有关。
经过长时间大量的计算与资料收集,贝赫和斯维纳通-戴尔观察出一些规律与模式,因而提出BSD猜想:设E是定义在代数数域 K 上的椭圆曲线,E(K)是 E 上的有理点的集合,已经知道 E(K)是有限生成交换群。记 L(s,E)是 E 的Hasse-Weil L函数。则E(K)的秩恰好等于L(E,s)在s=1处零点的阶,并且后者的Taylor展开的第一个非零系数可以由曲线的代数性质精确表出。
前半部分通常称为弱BSD猜想,后半部分则是BSD猜想分圆域的类数公式的推广。
目前,数学家们仅仅证明了rank=0和1的弱BSD猜想成立,对于Rank≥2部分的强BSD猜想,依旧无能为力。
此前庞学林也是沿着格罗斯、科茨走的那条路线,尝试在rank=0和1的基础上,推出rank≥2的BSD猜想,却发现渐渐走进了死胡同。
最近半年内,他始终没有任何进展。
因此,他非常好奇,系统给出的证明过程,到底采用了什么思路。
庞学林打开BSD猜想证明论文,看了起来。
BSD猜想的证明一共有六十多页,对对一个千禧难题级别的猜想而言,显得过于精简了一些。
不过这并不重要,当年佩雷尔曼证明庞加莱猜想的时候,才用了三十多页,因为过程太过简略,好多人都看不懂,在数学界的强烈要求下,佩雷尔曼勉强又补充了两篇文章,之后便再也不肯多给了。
但这并不妨碍佩雷尔曼的伟大。
因此,论文的长短并不重要,关键要看论文的质量。
庞学林并没有从开头开始细读,而是先粗略浏览。
粗略浏览,有助于他从整体上了解BSD猜想的证明思路。
不过很快,庞学林的眉头便皱了起来。
论文的开头,便给出了一个与当前数学界截然不同的思路。
论文的第一部分,写得是关于同余数问题的证明,即存在无穷多个素因子个数为任何指定正整数的同余数。
然后,推导出BSD对这样的E_D成立:D是某个8k+5型素数和若干8k+1型素数的乘积,只要\Bbb Q(\sqrt{-D})的类群的4倍映射是单的。
这就有意思了。
虽然当前数学界,已经有人尝试通过同余数问题去证明BSD猜想。
但这条路难度太大,还处于萌发状态,目前国际数学界并没有出现太多的成果。
这篇论文的出现,说明当前流行的BSD猜想证明方法,最终都会走向死胡同。
通过同余数问题证明BSD猜想,才是正确的思路。
庞学林凝神屏气,继续看下去。
……
给定素数p,(1)p \equiv 3(\mod 8):p不是同余数但2 p是同余数;(2)p \equiv 5(\mod 8):p是同余数;(3)p \equiv 7(\mod 8):p和2 p都是同余数。
(弱BSD猜想)BSD猜想对E_D成立。特别的,r_D>0当且仅当L(1,E_D)=0。
假定弱BSD猜想成立,则(1)理
(本章未完,请点击下一页继续阅读)